Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9

نویسندگان

  • Gabriel Peinado Allina
  • Christopher Fortenbach
  • Franklin Naarendorp
  • Owen P Gross
  • Edward N Pugh
  • Marie E Burns
چکیده

The temporal resolution of scotopic vision is thought to be constrained by the signaling kinetics of retinal rods, which use a highly amplified G-protein cascade to transduce absorbed photons into changes in membrane potential. Much is known about the biochemical mechanisms that determine the kinetics of rod responses ex vivo, but the rate-limiting mechanisms in vivo are unknown. Using paired flash electroretinograms with improved signal-to-noise, we have recorded the amplitude and kinetics of rod responses to a wide range of flash strengths from living mice. Bright rod responses in vivo recovered nearly twice as fast as all previous recordings, although the kinetic consequences of genetic perturbations previously studied ex vivo were qualitatively similar. In vivo, the dominant time constant of recovery from bright flashes was dramatically reduced by overexpression of the RGS9 complex, revealing G-protein deactivation to be rate limiting for recovery. However, unlike previous ex vivo recordings, dim flash responses in vivo were relatively unaffected by RGS9 overexpression, suggesting that other mechanisms, such as calcium feedback dynamics that are strongly regulated by the restricted subretinal microenvironment, act to determine rod dim flash kinetics. To assess the consequences for scotopic vision, we used a nocturnal wheel-running assay to measure the ability of wild-type and RGS9-overexpressing mice to detect dim flickering stimuli and found no improvement when rod recovery was speeded by RGS9 overexpression. These results are important for understanding retinal circuitry, in particular as modeled in the large literature that addresses the relationship between the kinetics and sensitivity of retinal responses and visual perception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding rod recovery improves temporal resolution in the retina

The temporal resolution of the visual system progressively increases with light intensity. Under scotopic conditions, temporal resolution is relatively poor, and may be limited by both retinal and cortical processes. Rod photoresponses themselves are quite slow because of the slowly deactivating biochemical cascade needed for light transduction. Here, we have used a transgenic mouse line with f...

متن کامل

Response properties of cones from the retina of the tiger salamander.

1. Spectral sensitivity measurements using the suction electrode technique reveal three types of cone in the retina of the tiger salamander, showing maximum sensitivity at wavelengths 610 nm (red-sensitive cone), 444 nm (blue-sensitive cone) and below 400 nm (UV-sensitive cone). 2. The absolute sensitivities of red- and blue-sensitive cones to flashes of optimal wavelength are 0.022 and 0.33 pA...

متن کامل

Functional comparison of RGS9 splice isoforms in a living cell.

Two isoforms of the GTPase-activating protein, regulator of G protein signaling 9 (RGS9), control such fundamental functions as vision and behavior. RGS9-1 regulates phototransduction in rods and cones, and RGS9-2 regulates dopamine and opioid signaling in the basal ganglia. To determine their functional differences in the same intact cell, we replaced RGS9-1 with RGS9-2 in mouse rods. Surprisi...

متن کامل

Novel Form of Adaptation in Mouse Retinal Rods Speeds Recovery of Phototransduction

Photoreceptors of the retina adapt to ambient light in a manner that allows them to detect changes in illumination over an enormous range of intensities. We have discovered a novel form of adaptation in mouse rods that persists long after the light has been extinguished and the rod's circulating dark current has returned. Electrophysiological recordings from individual rods showed that the time...

متن کامل

Enhancement of changes in dim flash response kinetics during light adaptation by 9-demethylretinal in isolated salamander rods

During light adaptation Ca acts on a step early in phototransduction that takes place with a time constant of ~0.5 s (Matthews, 1997). In rods that have been bleached and regenerated with 11-cis-9-demethylretinal, which forms a photopigment with a prolonged photoactivated lifetime (Corson et al. 1994), the time course of this Ca-dependent step is greatly prolonged so that it dominates the recov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2017